How do you simplify #(16 times r ^3 times t ^2) /(- 4 times r times t)#?

2 Answers
Jan 15, 2017

See full simplification process below:

Explanation:

To simplify this expression use these rule for exponents:

#x^color(red)(a)/x^color(blue)(b) = x^(color(red)(a)-color(blue)(b))#

#a = a^color(red)(1)#

#a^color(red)(1) = a#

#(16 xx r^color(red)(3) xx t^color(red)(2))/(-4 xx r^color(blue)(1) xx t^color(blue)(1)#

#-4 xx r^(color(red)(3)-color(blue)(1)) xx t^(color(red)(2)-color(blue)(1))#

#-4 xx r^2 xx t^1#

#-4 xx r^2 xx t#

Jan 15, 2017

#-4r^2t#

Explanation:

Using the #color(blue)"law of exponents"#

#color(orange)"Reminder " color(red)(bar(ul(|color(white)(2/2)color(black)(a^m/a^n=a^(m-n))color(white)(2/2)|)))#

#rArr(16r^3t^2)/(-4rt)#

#=16/(-4)xxr^3/r^1xxt^2/t^1#

#=-4xxr^(3-1)xxt^(2-1)=-4r^2t#