How do you simplify #(2^5*2^-4)/2# and write it using only positive exponents?

2 Answers
Jan 3, 2018

1

Explanation:

Given #(2^5*2^-4)/2#.

First use the property that #a^b * a^c = a^(b+c)# in the numerator:

#(2^5*2^-4)/2 = (2^(5+(-4)))/2 = 2^(1)/2#

#2^(1)/2 = 2/2 = 1#

Jan 3, 2018

#1#

Explanation:

#"using the "color(blue)"law of exponents"#

#•color(white)(x)a^mxxa^n=a^((m+n))#

#•color(white)(x)a^0=1#

#rArr(2^5xx2^(-4))/2=2^((5+(-4)))/2=2^(5-4)/2^1=2^1/2^1=2^(1-1)=2^0=1#
Or simply
#2^1/2^1=2/2=1#