How do you simplify #(-2w^-2)(-3w^2b^-2)(-5b^-3) #?

1 Answer
Jun 22, 2015

Answer:

#=color(blue)(-30b^-5 #

Explanation:

Here all terms within brackets need to be multiplied:

Rearranging the terms
#(-2. -3 . -5)(w^-2 . w^2)(.b^-2b^-3) #

Note: #color(blue)(a^m.a^n = a^(m+n)#

Applying the above property to the exponents of #w# and #b#

#=-30.w^color(blue)((-2 +2)).b^color(blue)((-2-3) #
#=-30w^0b^-5 #

Note: #color(blue)(a^0 = 1#
#=color(blue)(-30b^-5 #