How do you simplify #2x+3/(x^2-9) + x/(x-3)#?
1 Answer
Jan 11, 2018
Explanation:
#"before adding the fractions we require them to have"#
#"a "color(blue)"common denominator"#
#"factorise the denominator "x^2-9#
#x^2-9=(x-3)(x+3)larrcolor(blue)"difference of squares"#
#"multiply numerator/denominator of"x/(x-3)" by "(x+3)#
#=3/((x-3)(x+3))+(x(x+3))/((x-3)(x+3))#
#"add the numerators leaving the denominator"#
#=(3+x^2+3x)/((x-3)(x+3))=(x^2+3x+3)/((x-3)(x+3))#