How do you simplify #(2x+4)/10#?

1 Answer
Apr 19, 2017

See the entire solution process below:

Explanation:

One way to simplify this expression is:

#(2x + 4)/10 => (2x)/10 + 4/10 => (2x)/(2 xx 5) + (2 xx 2)/(2 xx 5) =>#

#(color(red)(cancel(color(black)(2)))x)/(color(red)(cancel(color(black)(2))) xx 5) + (color(red)(cancel(color(black)(2))) xx 2)/(color(red)(cancel(color(black)(2))) xx 5) => x/5 + 2/5#

Another way to simplify is;

#(2x + 4)/10 => (2(x + 2))/(2 xx 5) => (color(red)(cancel(color(black)(2)))(x + 2))/(color(red)(cancel(color(black)(2))) xx 5) => (x + 2)/5#