How do you simplify #(2xy^4)/(-x^2 y^0)#?

1 Answer
Mar 10, 2018

Answer:

See a solution process below:

Explanation:

First, use this rule of exponents to simplify the denominator:

#a^color(red)(0) = 1#

#(2xy^4)/(-x^2y^color(red)(0)) => (2xy^4)/(-x^2 xx 1) => (2xy^4)/(-x^2) => -(2xy^4)/x^2#

Next, use these rules for exponents to simplify the #x# terms:

#a = a^color(red)(1)# and #x^color(red)(a)/x^color(blue)(b) = 1/x^(color(blue)(b)-color(red)(a))# and #a^color(red)(1) = a#

#-(2xy^4)/x^2 => -(2x^color(red)(1)y^4)/x^color(blue)(2) => -(2y^4)/x^(color(blue)(2)-color(red)(1)) => -(2y^4)/x^color(red)(1) => -(2y^4)/x#