How do you simplify #((3xy^4)/(5z^2))^2#?

1 Answer
May 13, 2017

See a solution process below:

Explanation:

First, use this rule of exponents to rewrite the expression:

#a = a^color(red)(1)#

#((3xy^4)/(5z^2))^2 => ((3^color(red)(1)x^color(red)(1)y^4)/(5^color(red)(1)z^2))^2#

Now, use this rule of exponents to eliminate the exponent outside the parenthesis:

#((3^color(red)(1)x^color(red)(1)y^color(red)(4))/(5^color(red)(1)z^color(red)(2)))^color(blue)(2) => (3^(color(red)(1) xx color(blue)(2))x^(color(red)(1) xx color(blue)(2))y^(color(red)(4) xx color(blue)(2)))/(5^(color(red)(1) xx color(blue)(2))z^(color(red)(2) xx color(blue)(2))) => (3^2x^2y^8)/(5^2z^4) =>#

#(9x^2y^8)/(25z^4)#