# How do you simplify (4 / 2) + 4(5 - 2)^2  using PEMDAS?

Mar 27, 2018

$38$

#### Explanation:

$\text{simplify using PEMDAS}$

["P-parenthesis (brackets), E-exponents (powers), "
"M-multiplication, D-division, A-addition, S-subtraction"]

$\Rightarrow 2 + 4 {\left(3\right)}^{2} \leftarrow \textcolor{red}{\text{parenthesis}}$

$= 2 + 4 \times 9 \leftarrow \textcolor{red}{\text{exponents}}$

$= 2 + 36 \leftarrow \textcolor{red}{\text{multiplication}}$

$= 38 \leftarrow \textcolor{red}{\text{addition}}$

Mar 27, 2018

$38$

#### Explanation:

The most important thing is to identify and count the number of TERMS first.

Terms are separated by $+ \mathmr{and} -$ signs.

Each term is simplified to a single answer and they are added or subtracted in the last step.

Within each term: the order is

Brackets
powers and roots
Of
multiplication and division

$\text{ "color(blue)((4 / 2))color(red)( + 4(5 - 2)^2)" } \leftarrow$ there are 2 terms
$\text{ "darr color(white)(xxx..x)darr" }$ division and subtraction
=color(blue)((2))" "color(red)( +" " 4(3)^2)
$\text{ } \downarrow \textcolor{w h i t e}{\times x . . x} \downarrow$
$= \textcolor{b l u e}{2} \text{ "color(red)( +" } 4 \left(9\right)$
$\text{ } \downarrow \textcolor{w h i t e}{\times \times . x} \downarrow$
=color(blue)(2)" "color(red)( +" " 36)

$= 38$