How do you simplify #4(3a^4b^-2)^-1#?

1 Answer
May 18, 2016

Answer:

#4((b^2)/(3a^4)) #

Explanation:

If you have a negative exponent for example #x^(-1)# it means the following:

Write as #(x^(-1))/1# and turn upside down to give: #1/x#

In the same way: #x^(-2)->1/(x^2)#
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Given:#" "4(3a^4b^(-2))^(-1)#

Dealing with the negative exponent inside the brackets first

Write as: #4xx((3a^4)/(b^2))^-1 #

Now dealing with the negative exponent outside the brackets

#4xx((b^2)/(3a^4)) -> 4((b^2)/(3a^4)) #