How do you simplify #4^6/4^8#?

2 Answers
Jan 22, 2016

# 1/16 #

Explanation:

using : # a^m = 1/a^-m hArr a^-m = 1/a^m #

then : # 4^6/4^8 = 1/4^(8 - 6 ) = 1/4^2 = 1/16 #

Feb 8, 2016

#=1/16#

Explanation:

#4^6/4^8#

#color(green)(4^6=4*4*4*4*4*4#

#color(blue)(4^8=4*4*4*4*4*4*4*4#

So,

#4^6/4^8=#

#rarrcolor(green)(4*4*4*4*4*4)/color(blue)(4*4*4*4*4*4*4*4)#

#rarrcolor (green)(cancel4*cancel4*cancel4*cancel4*cancel4*cancel4)/color(blue)(cancel4*cancel4*cancel4*cancel4*cancel4*cancel4*4*4)=#

#rarrcolor(green)1/color(blue)(4*4)=color(green)1/color(blue)16#