How do you simplify #(45a^11b^13)/(-9a^7b^8)#? Algebra Exponents and Exponential Functions Exponential Properties Involving Quotients 1 Answer Don't Memorise Apr 30, 2016 # = -5 a^(4)b^(5)# Explanation: #(45 a^11b^13) / (-9 a^7b^8)# # = (45 / -9) * ( a^11b^13) / ( a^7b^8)# # = (cancel45 / cancel(-9)) * color(blue)(( a^11b^13) / ( a^7b^8)# # = (-5) * color(blue)( ( a^11b^13) / ( a^7b^8)# According to property: #color(blue)(a^m / a ^n = a ^(m-n)# # = (-5) * color(blue)( a^((11 - 7)) * b^((13 - 8))# # = (-5) * color(blue)( a^(4) * b^(5)# # = -5 a^(4)b^(5)# Answer link Related questions What is the quotient of powers property? How do you simplify expressions using the quotient rule? What is the power of a quotient property? How do you evaluate the expression #(2^2/3^3)^3#? How do you simplify the expression #\frac{a^5b^4}{a^3b^2}#? How do you simplify #((a^3b^4)/(a^2b))^3# using the exponential properties? How do you simplify #\frac{(3ab)^2(4a^3b^4)^3}{(6a^2b)^4}#? Which exponential property do you use first to simplify #\frac{(2a^2bc^2)(6abc^3)}{4ab^2c}#? How do you simplify #(x^5y^8)/(x^4y^2)#? How do you simplify #[(2^3 *-3^2) / (2^4 * 3^-2)]^2#? See all questions in Exponential Properties Involving Quotients Impact of this question 1304 views around the world You can reuse this answer Creative Commons License