How do you simplify #(45a^11b^13)/(-9a^7b^8)#?

1 Answer
Apr 30, 2016

# = -5 a^(4)b^(5)#

Explanation:

#(45 a^11b^13) / (-9 a^7b^8)#

# = (45 / -9) * ( a^11b^13) / ( a^7b^8)#

# = (cancel45 / cancel(-9)) * color(blue)(( a^11b^13) / ( a^7b^8)#

# = (-5) * color(blue)( ( a^11b^13) / ( a^7b^8)#

  • According to property:
    #color(blue)(a^m / a ^n = a ^(m-n)#

# = (-5) * color(blue)( a^((11 - 7)) * b^((13 - 8))#

# = (-5) * color(blue)( a^(4) * b^(5)#

# = -5 a^(4)b^(5)#