How do you simplify #(4k^3m^2)^3/(5k^2m^-3)^-2#? Algebra Exponents and Exponential Functions Exponential Properties Involving Quotients 1 Answer Tazwar Sikder May 18, 2017 #1600 k^(13)# Explanation: We have: #frac((4 k^(3) m^(2))^(3))((5 k^(2) m^(- 3))^(- 2)# Using the laws of exponents: #= frac(64 k^(9) m^(6))(frac(1)(25) cdot k^(- 4) m^(6))# #= frac(64)(frac(1)(25)) cdot k^(9 - (- 4)) cdot m^(6 - 6)# #= (64 times 25) k^(9 + 4) m^(0)# #= 1600 k^(13) times 1# #= 1600 k^(13)# Answer link Related questions What is the quotient of powers property? How do you simplify expressions using the quotient rule? What is the power of a quotient property? How do you evaluate the expression #(2^2/3^3)^3#? How do you simplify the expression #\frac{a^5b^4}{a^3b^2}#? How do you simplify #((a^3b^4)/(a^2b))^3# using the exponential properties? How do you simplify #\frac{(3ab)^2(4a^3b^4)^3}{(6a^2b)^4}#? Which exponential property do you use first to simplify #\frac{(2a^2bc^2)(6abc^3)}{4ab^2c}#? How do you simplify #(x^5y^8)/(x^4y^2)#? How do you simplify #[(2^3 *-3^2) / (2^4 * 3^-2)]^2#? See all questions in Exponential Properties Involving Quotients Impact of this question 1944 views around the world You can reuse this answer Creative Commons License