How do you simplify #(-4w^3x^5 )/(-2w^2x^2)#?

1 Answer
May 22, 2018

Answer:

#2wx^(3)#

Explanation:

#(-4w^3x^5 )/(-2w^2x^2)#

#(2w^3x^5 )/(1w^2x^2)=(2w^3x^5 )/(w^2x^2)# because #(-4)/(-2)=2/1=2#

when we move a variable across the division bar the exponent changes signs, we'll move #w# and #x# to the top:

#(2*w^3*w^-2*x^5*x^-2 )#

when you multiply variables together you add the exponents:

#2*w^(3+(-2))*x^(5+(-2))#

#2*w^(1)*x^(3)#

#2wx^(3)#