How do you simplify #(4x^2-9)/(2x^2+11x+12)# to lowest terms?

2 Answers
Apr 24, 2018

Answer:

#(2x-3)/(x+4)#

Explanation:

#4x^2-9=(2x-3)(2x+3)#
#2x^2+11x+12= (2x+3)(x+4)#

Therefore,

#(4x^2-9)/(2x^2+11x+12) = ((2x-3)(2x+3))/((2x+3)(x+4))#

= #(2x-3)/(x+4)#

Apr 24, 2018

Answer:

#(2x-3)/(x+4)#

Explanation:

#(4x^2-9)/(2x^2+11x+12)#

=#[(2x-3)(2x+3)]/(2x^2+8x+3x+12)#

=# [(2x-3)(2x+3)]/[2x(x+4)+3(x+4)]#

=# [(2x-3)(2x+3)]/[(x+4)(2x+3]#

=#(2x-3)/(x+4)# , #x!=-4#, #x!=-3/2#