#color(blue)((4x^3) / (2x^2) ) -: color(green)( (x^2 - 9)) / color(purple)( (x^2 - 4x - 21)#
- Simplifying #color(blue)((4x^3) / (2x^2) ):#
# = (4/ 2 ) * x^3 / x^2#
As per property : #a^m /a ^n = a^(m-n)#
# = (cancel4/ cancel2 ) * x^ ((3 -2) ) = 2 * x^ 1 = color(blue)(2x#
- Factorising #color(green)(x^2 - 9 = x^2 - 3^2:#
Applying property #a^2- b^2 = (a+b)(a-b)#
#x^2 - 3^2 = color(green)((x+3)(x-3)#
- Factorising #color(purple)( (x^2 - 4x - 21):# (by splitting the middle term)
# x^2 - 4x - 21 = x^2 - 7x +3x - 21 #
#= x ( x- 7 ) + 3 (x - 7) #
#= color(purple)((x+3) ( x- 7 ) #
The overall expression now becomes:
#color(blue)((4x^3) / (2x^2) ) -: color(green)( (x^2 - 9)) / color(purple)( (x^2 - 4x - 21)) = color(blue)( 2x) -: color(green)((x+3)(x-3))/ color(purple)((x+3) ( x- 7 ) #
# = color(blue)( 2x) xx color(purple)((x+3) ( x- 7 ) )/ color(green)((x+3)(x-3)) #
# = 2x xx (cancel(x+3) ( x- 7 ) )/ (cancel(x+3)(x-3) #
# = (2x xx ( x- 7 ) )/ (x-3) #
# = (2 x^2- 14x )/ (x-3) #