How do you simplify #((6x^4y^8)^3)/(4x^4y^10)#?
4 Answers
Explanation:
Explanation:
Write as
Explanation:
#color(blue)((6x^4y^8)^3/(4x^4y^10)#
First simplify
Use the exponental property
So,
Remember
#color(purple)((6x^4)^3=(6x^4)(6x^4)(6x^4)#
#color(purple)((y^8)^3=(y^8)(y^8)(y^8)#
Then solve for the question
And also remind that
#color(brown)(x^y/x^z=x^(y-z)#
Explanation:
Using the following
#color(blue)" rules of exponents "#
#• (a^m)^n = a^(mxxn) = a^(mn) #
#• (a^m b^p)^n = a^(mn) b^(pn) " etc. " # hence:
#(6x^4y^8) = 6^(1xx3)x^(4xx3)y^(8xx3) = 6^3x^12y^24 =216x^12y^24#
#"-------------------------------------------------------------------"#
#• (a^m)/(a^n) = a^(m-n) #
#"----------------------------------------------------------"# hence:
# (216x^12y^24)/(4x^4y^10) #
# = 216/4 xxx^12 /x^4 xxy^24/y^10 = 54xxx^(12-4)xxy^(24-10)#
# = 54x^8y^14 #