How do you simplify #[(6x^-4z^3)/(2xz^-3)]^-1#?

1 Answer
Sep 1, 2016

Answer:

#x^5/(3z^6)#

Explanation:

There are a number of laws of indices involved here.
Do one step at a time.

#[(6x^-4z^3)/(2xz^-3)]^color(red)(-1) larr# Flip the fraction. Index changes sign.

#[(cancel2xcolor(blue)(z^-3))/(cancel6^3color(magenta)(x^-4)z^3)]^color(red)(+1)larr " cancel numbers, " x^-m = 1/x^m#

#(xcolor(magenta)(x^4))/(3z^3color(blue)(z^3)) " "larr # add indices of like bases.

#x^5/(3z^6)#