How do you simplify #-8 ^ (2/3) #?
1 Answer
Aug 11, 2016
Explanation:
Using the
#color(blue)"laws of exponents"#
#color(orange)"Reminder " color(red)(|bar(ul(color(white)(a/a)color(black)(a^mxxa^n=a^(m+n))color(white)(a/a)|)))........ (A)# Let's define, generally, the meaning of
#a^(2/3)# Using (A)
#a^(2/3)xxa^(2/3)xxa^(2/3)=a^(6/3)=a^2........ (1)# now
#a^(2/3)xxa^(2/3)xxa^(2/3)=(a^(2/3))^3........ (2)# Since the 2 expressions are equivalent we can equate them.
#rArr(a^(2/3))^3=a^2# Take the
#color(blue)"cube root"# of both sides
#rArrcolor(red)(|bar(ul(color(white)(a/a)color(black)(a^(2/3)=root(3)(a^2)=(root(3)(a))^2)color(white)(a/a)|)))# We can now evaluate
#-8^(2/3)#
#-8^(2/3)=-1xx(root(3)8)^2=-1xx(2)^2=-1xx4=-4#