How do you simplify #9 div 3/4#?

1 Answer
Jul 6, 2018

Answer:

See a solution process below:

Explanation:

We can rewrite this expression as:

#9 -: 3/4 => 9/1 -: 3/4 => (9/1)/(3/4)#

Now, we can use this rule for dividing fractions to simplify the expression:

#(color(red)(a)/color(blue)(b))/(color(green)(c)/color(purple)(d)) = (color(red)(a) xx color(purple)(d))/(color(blue)(b) xx color(green)(c))#

#(color(red)(9)/color(blue)(1))/(color(green)(3)/color(purple)(4)) => (color(red)(9) xx color(purple)(4))/(color(blue)(1) xx color(green)(3)) => (cancel(color(red)(9))color(red)(3) xx color(purple)(4))/(color(blue)(1) xx cancel(color(green)(3))color(green)(1)) => 12/1 => 12#