How do you simplify #(-91a^4b+14ab )/ (-7ab)#?
1 Answer
#= 13a^3-2#
#=(root(3)(13)a-root(3)(2))(root(3)(169)a^2+root(3)(26)a+root(3)(4))#
with exclusions
Explanation:
Both of the terms
#(-91a^4b+14ab)/(-7ab) = 13a^3-2#
with exclusions
Note that the exclusions are required because if
I guess that counts as 'simplified', but it can be factored too, using cube roots...
For any Real numbers
#root(3)(x) root(3)(y) = root(3)(xy)#
We will use this below.
The difference of cubes identity can be written:
#A^3-B^3 = (A-B)(A^2+AB+B^2)#
We can factor
#13a^3-2#
#=(root(3)(13)a)^3-(root(3)(2))^3#
#=(root(3)(13)a-root(3)(2))((root(3)(13)a)^2+(root(3)(13)a)(root(3)(2))+(root(3)(2))^2)#
#=(root(3)(13)a-root(3)(2))(root(3)(169)a^2+root(3)(26)a+root(3)(4))#