How do you simplify #(9y)(2y^3)^2#?

1 Answer
Feb 1, 2017

Answer:

See the entire simplification process below:

Explanation:

Start the simplification process by using these rule for exponents:

#a = a^color(red)(1)#

#(x^color(red)(a))^color(blue)(b) = x^(color(red)(a) xx color(blue)(b))#

#(9y)(2^color(red)(1)y^color(red)(3))^color(blue)(2) -> (9y)(2^(color(red)(1)xxcolor(blue)(2))y^(color(red)(3)xxcolor(blue)(2))) -> (9y)(2^2y^6) -> (9y)(4y^6)#

Now, regroup like terms and use these rule of exponents to complete the simplification:

#a = a^color(red)(1)#

#x^color(red)(a) xx x^color(blue)(b) = x^(color(red)(a) +color(blue)(b))#

#(9y)(4y^6) -> (9 xx 4)(y xx y^6) -> 36(y^color(red)(1) xx y^color(blue)(6)) ->#

#36(y^(color(red)(1)+color(blue)(6))) ->#

#36y^7#