How do you simplify #(a^-1b^(1/3)*a^(-4/3)b^2)^2#?

1 Answer
Jan 15, 2017

See entire simplification process below:

Explanation:

First, we can use this rule for exponents to start the simplification process:

#(x^color(red)(a))^color(blue)(b) = x^(color(red)(a) xx color(blue)(b))#

#(a^color(red)(-1)b^color(red)(1/3)*a^color(red)(-4/3)b^color(red)(2))^color(blue)(2) ->#

#(a^(color(red)(-1)xx color(blue)(2))b^(color(red)(1/3)xxcolor(blue)(2))*a^(color(red)(-4/3)xxcolor(blue)(2))b^(color(red)(2)xxcolor(blue)(2))) ->#

#a^-2b^(2/3)*a^(-8/3)b^4#

Next, we can group like terms:

#(a^-2*a^(-8/3))(b^(2/3)*b^4)#

Next, we can use this rule of exponents to further simplify:

#x^color(red)(a) xx x^color(blue)(b) = x^(color(red)(a) +color(blue)(b))#

#(a^color(red)(-2)*a^color(blue)(-8/3))(b^color(red)(2/3)*b^color(blue)(4))#

#(a^color(red)(-2xx3/3)*a^color(blue)(-8/3))(b^color(red)(2/3)*b^color(blue)(4xx3/3))#

#(a^color(red)(-6/3)*a^color(blue)(-8/3))(b^color(red)(2/3)*b^color(blue)(12/3))#

#(a^(color(red)(-6/3)+color(blue)(-8/3)))(b^(color(red)(2/3)+color(blue)(12/3)))#

#a^(-14/3)b^(14/3)#

We can now use this rule of exponents to further transform this expression:

#x^color(red)(a) = 1/x^color(red)(-a)#

#b^(14/3)/a^(- -14/3)#

#b^(14/3)/a^(14/3)#

or

#(b/a)^(14/3)#