How do you simplify #(a^-2b^4)/(3a^-3)# and write it using only positive exponents?

1 Answer
Jun 3, 2017

Answer:

See a solution process below:

Explanation:

Use these rules for exponents to simplify the expression:

#x^color(red)(a)/x^color(blue)(b) = x^(color(red)(a)-color(blue)(b))# and #a^color(red)(1) = a#

#(a^color(red)(-2)b^4)/(3a^color(blue)(-3)) => (a^(color(red)(-2)- color(blue)(-3))b^4)/3 => (a^(color(red)(-2)+color(blue)(3))b^4)/3 =>#

#(a^color(red)(1)b^4)/3 => (ab^4)/3#