How do you simplify #-a * -a#?

2 Answers
Mar 16, 2017

Answer:

#(-a) * (-a) = color(green)(a^2)#

Explanation:

#(-a) * (-a)color(white)("XXX")#I've added the parentheses
#color(white)("XXXXXXXXXXX")#since having multiple operators in a row can be confusing.

#color(white)("XXX")=(-1) * a * (-1) * a#

#color(white)("XXX")=(-1) * (-1) * a * a#

#color(white)("XXX")=+1 * a^2#

#color(white)("XXX")=a^2#

Mar 16, 2017

Answer:

See the entire simplification process below:

Explanation:

Use these two rules of exponents to simplify this expression:

#a = a^color(red)(1)# and #x^color(red)(a) xx x^color(blue)(b) = x^(color(red)(a) + color(blue)(b))#

#-a * -a = -a^color(red)(1) * -a^color(blue)(1) = (-a)^(color(red)(1) + color(blue)(1)) = (-a)^2#