How do you simplify and find the restrictions for #(2x^2-4x )/(3x)#?

1 Answer
Jun 6, 2017

Answer:

See a solution process below:

Explanation:

First, we can rewrite this expression as:

#(2x^2)/(3x) - (4x)/(3x) => (2 * x * x)/(3x) - (4color(red)(cancel(color(black)(x))))/(3color(red)(cancel(color(black)(x)))) =>#

#(2 * color(red)(cancel(color(black)(x))) * x)/(3color(red)(cancel(color(black)(x)))) - 4/3 =>#

#(2x)/3 - 4/3#

Where

#3x != 0# or #x != 0#