How do you simplify #(e^-3 * e^4)/(e^-2 * e^-1)#?

1 Answer
Mar 4, 2016

#(e^(-3)*e^4)/(e^(-2)*e^(-1))=e^3#

Explanation:

From laws of exponents, #x^(-n)=1/x^n# and #x^m*x^n=x^(m+n)#.

Hence, to convert a negative exponent into a positive one, we may take it to the top or bottom of the fraction.

#therefore(e^(-3)*e^4)/(e^(-2)*e^(-1))=(e^2*e^4*e^1)/(e^4)#

#=e^7/e^4#

#=e^3#