How do you simplify #f(theta)=-2csc(theta/4)-cot(theta/2)-3cos(theta/4)# to trigonometric functions of a unit #theta#?

1 Answer
Feb 10, 2017

#f(theta)=+-2/(sqrt((1+-sqrt((1+cos(theta))/2))/2))+-sqrt((1+-sqrt((1+cos(theta))/2))/2)/(sqrt((1-cos(theta))/2))+-3sqrt((1+-sqrt((1+cos(theta))/2))/2)#

Explanation:

Assuming the question is asking you to get rid of the fractions, it is important to know your half-angle formulas:

  • #sin(u/2)=+-sqrt((1-cos(u))/2#
  • #cos(u/2)=+-sqrt((1+cos(u))/2)#
  • #tan(u/2)=(1-cos(u))/sin(u)#

Step 1. Change #csc# and #cot# in terms of #sin# and #cos#

#f(theta)=-2/sin(theta/4)-cos(theta/2)/sin(theta/2)-3cos(theta/4)#

Step 2. Express each term so that it has #theta"/"2#

#f(theta)=-2/sin((theta"/"2)/2)-cos(theta/2)/sin(theta/2)-3cos((theta"/"2)/2)#

Step 3. Replace each #sin# and #cos# with half-angle formulas

#f(theta)=+-2/(sqrt((1-cos(theta/2))/2))+-sqrt((1+cos(theta/2))/2)/(sqrt((1-cos(theta))/2))+-3sqrt((1+cos(theta/2))/2)#

Step 4. Replace each #theta"/"2# term with it its half-angle formula

#f(theta)=+-2/(sqrt((1+-sqrt((1+cos(theta))/2))/2))+-sqrt((1+-sqrt((1+cos(theta))/2))/2)/(sqrt((1-cos(theta))/2))+-3sqrt((1+-sqrt((1+cos(theta))/2))/2)#

I'll leave simplifying this as homework!