How do you simplify #f(theta)=-2csc(theta/4)+tan(theta/2)-3cos(theta/4)# to trigonometric functions of a unit #theta#?

1 Answer
Dec 11, 2016

#f(theta)=-2csc(theta/4)+tan(theta/2)-3cos(theta/4)#

#=frac{-2}{sin(theta/4)}+frac{sin(theta/2)}{cos(theta/2)}-3cos(theta/4)#

#=frac{-2cos(theta/2)+sin(theta/2)sin(theta/4)-3cos(theta/4)sin(theta/4)cos(theta/2)}{sin(theta/4)cos(theta/2)}#

Some identities to substitute in (half-angle and quarter-angle formulas):
#sin(a/2)=+-sqrt[frac{1-cosa}{2}]#
#cos(a/2)=+-sqrt[frac{1+cosa}{2}]#
#sin(theta/4)=sin((theta/2)/2)=+-sqrt[frac{1-+-sqrtfrac{1+costheta}{2}}{2}]#
#cos(theta/4)=cos((theta/2)/2)=+-sqrtfrac{1++-sqrtfrac{1-costheta}{2}}{2}#