First, use this rule for exponents to simplify the #y# term:
#a^color(red)(0) = 1#
#(13x^-5y^color(red)(0))/(5^-3z^-10) => (13x^-5 * 1)/(5^-3z^-10) => (13x^-5 * 1)/(5^-3z^-10) => (13x^-5)/(5^-3z^-10)#
Next, we can eliminate the negative exponents in the denominator using this rule of exponents:
#1/x^color(red)(a) = x^color(red)(-a)#
#(13x^-5)/(5^color(red)(-3)z^color(red)(-10)) => (13x^-5)(5^color(red)(- -3)z^color(red)(- -10)) => (13x^-5)(5^color(red)(3)z^color(red)(10)) =>#
#(13x^-5)(125z^10) => (13 xx 125)(x^-5z^10) => 1625x^-5z^10#
Now, we can use this rule for exponents to eliminate the negative exponent for the #x# term:
#x^color(red)(a) = 1/x^color(red)(-a)#
#1625x^color(red)(-5)z^10 => (1625z^10)/x^color(red)(- -5) => (1625z^10)/x^5#