#\frac { - 49x ^ { 8} + 14x ^ { 6} - 14x ^ { 4} } { - 7x ^ { 6} }#
Take #7x^4# common from both numerator and denominator:
Using Rule of indices :
#a^m a^n = a^(m+n)#
=#\frac {7x^4 (- 7x ^ { 4} + 2x ^ { 2} - 2)} { - 7x ^ { 4} (x^2) }#
=#\frac {cancel(7x^4) (- 7x ^ { 4} + 2x ^ { 2} - 2)} { - cancel(7x ^ { 4}) (x^2) }#
=#\frac { (- 7x ^ { 4} + 2x ^ { 2} - 2)} { - (x^2) }#
=#\frac {cancel- (7x ^ { 4} - 2x ^ { 2} + 2)} {cancel- (x^2) }#
=#\frac { (7x ^ { 4}- 2x ^ { 2} + 2)} { (x^2) }#
Using rule of indices: #a^m /a^n = a^(m-n)# and/or #1/a^m = a^-m#
=# (7x ^ { 4} + 2x ^ { 2} - 2)\times (x^-2) #
=# 7x ^ { 4-2} + 2x ^ { 2-2} - 2 x^-2#
=# 7x ^ { 2} + 2x ^ { 0} - 2 x^-2#
#x^0 = 1#
=# 7x ^2 + 2\times 1 - 2 x^-2#
=# 7x ^2 + 2 - 2 x^-2#
=# 7x ^2 - 2 x^-2+ 2#
OR
=# 7x ^2 - 2/ x^2+ 2#