How do you simplify #(-kv)^2(-kv)^3(-kv)^4#?

1 Answer
Sep 29, 2015

Answer:

#-k^9v^9#

Explanation:

#color(red)((-kv)^2)color(blue)((-kv)^3)color(green)((-kv)^4)#

#color(white)("XXX")=color(red)((-1)^2k^2v^2)*color(blue)((-1)^3k^3v^3)*color(green)((-1)^4k^4v^4)#

#color(white)("XXX")=(color(red)((-1)^2) * color(blue)((-1)^3) * color(green)((-1)^4)) * (color(red)(k^2) * color(blue)(k^3) * color(green)(k^4)) * (color(red)(v^2) * color(blue)(v^3) * color(green)(v^4))#

#color(white)("XXX")=(-1)^9 * k^9 * v^9#

#color(white)("XXX")=-k^9v^9#