How do you simplify #(m^2-9mn+14n^2 )/(m^2+7mn+12n^2 )#?
1 Answer
#(m^2-9mn+14n^2)/(m^2+7mn+12n^2) = ((m-2n)(m-7n))/((m+3n)(m+4n))#
#color(white)((m^2-9mn+14n^2)/(m^2+7mn+12n^2)) = 1+(2n(n-8m))/((m+3n)(m+4n))#
Explanation:
Start by factoring both the numerator and denominator:
#(m^2-9mn+14n^2)/(m^2+7mn+12n^2) = ((m-2n)(m-7n))/((m+3n)(m+4n))#
There are no common factors to cancel.
Alternatively, we can split this rational expression as:
#(m^2-9mn+14n^2)/(m^2+7mn+12n^2) = (m^2+7mn+12n^2-16mn+2n^2)/(m^2+7mn+12n^2)#
#color(white)((m^2-9mn+14n^2)/(m^2+7mn+12n^2)) = ((m^2+7mn+12n^2)-16mn+2n^2)/(m^2+7mn+12n^2)#
#color(white)((m^2-9mn+14n^2)/(m^2+7mn+12n^2)) = 1+(-16mn+2n^2)/(m^2+7mn+12n^2)#
#color(white)((m^2-9mn+14n^2)/(m^2+7mn+12n^2)) = 1+(2n(n-8m))/(m^2+7mn+12n^2)#
#color(white)((m^2-9mn+14n^2)/(m^2+7mn+12n^2)) = 1+(2n(n-8m))/((m+3n)(m+4n))#