How do you simplify #(m^5)^2/m^-8#?

2 Answers
Jul 8, 2016

Answer:

#m^18#

Explanation:

To simplify #(m^5)^2/m^-8#

Begin by multiplying the two exponents on the numerator

#m^10/m^-8#

In order to eliminate the negative exponent in the denominator move the term to the numerator

#m^10m^8#

Now multiply the terms by adding the exponents

#m^(10+8)#

#m^18#

Jul 8, 2016

Answer:

#m^(18)#

Explanation:

Using the #color(blue)"laws of exponents"#

#color(orange)"Reminders"#

#•(a^m)^n=a^(mn)........ (1)#

#•a^m/a^n=a^(m-n)........ (2)#

Using (1) : # (m^5)^2=m^(5xx2)=m^(10)#

Using (2): #m^(10)/m^(-8)=m^(10-(-8)=m^(10+8)=m^(18)#