How do you simplify #root3(54e^9x)#?

1 Answer
May 6, 2018

Answer = #3.e^3.root(3)(2x)#

Explanation:

One of the simplest way is to find the multiples of 54.

#54 = 3xx3xx3xx2#
Now #root(3)54=root(3)(3xx3xx3xx2)#
#root(3)54=root(3)(3^3xx2)#
#root(3)54=3.root(3)(2)# ------> #root3(3^3)=3#

So now we go back to the original question:

#root(3)(54e^9x)#
We simply as follows:
#root(3)54xxroot(3)e^9xxroot(3)x#
#root(3)54=3.root(3)(2) xx e^(9xx1/3) xx root(3)x#
#root(3)54=3.root(3)(2) xx e^(3) xx root(3)x#
#3.e^3.root(3)(2x)#