How do you simplify #sin(a-270)cos(-a) + cos(a-270)sin(-a)#?

1 Answer
Dec 23, 2016

Use the following identities:

#sin(A - B) = sinAcosB - cosAsinB#

#cos(A - B) = cosAsinB + sinAsinB#

#sin(-x) = -sinx#

#cos(-x) = cosx#

#cos^2theta + sin^2theta = 1#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

#=(sinacos270˚ - cosasin270˚)(cosa) + (cosacos(270˚) + sinasin(270˚))(-sina)#

#=(sina(0) - cosa(-1))(cosa) + (cosa(0) + sina(-1))(-sina)#

#=cos^2a + (-sina)(-sina)#

#=cos^2a + sin^2a#

#=1#

Hopefully this helps!