How do you simplify #sin(u-v)cosv+cos(u-v)sinv#?

1 Answer
Jun 5, 2018

#sinu#

Explanation:

#"using the "color(blue)"addition formulae"#

#•color(white)(x)sin(x+-y)=sinxcosy+-cosxsiny#

#•color(white)(x)cos(x+-y)=cosxcosy∓sinxsiny#

#•color(white)(x)sin^2x+cos^2x=1#

#sin(u-v)cosvlarrcolor(red)"first term"#

#=(sinucosv-cosusinv)cosv#

#=sinucos^2vcancel(-cosucosvsinv)#

#cos(u-v)sinvlarrcolor(red)"second term"#

#=(cosucosv+sinusinv)sinv#

#=cancel(cosucosvsinv)+sinusin^2v#

#"adding the 2 expansions gives"#

#sinucos^2v+sinusin^2v#

#=sinu(cos^2v+sin^2v)=sinu#