How do you simplify #sin(u-v)cosv+cos(u-v)sinv#?
1 Answer
Jun 5, 2018
Explanation:
#"using the "color(blue)"addition formulae"#
#•color(white)(x)sin(x+-y)=sinxcosy+-cosxsiny#
#•color(white)(x)cos(x+-y)=cosxcosy∓sinxsiny#
#•color(white)(x)sin^2x+cos^2x=1#
#sin(u-v)cosvlarrcolor(red)"first term"#
#=(sinucosv-cosusinv)cosv#
#=sinucos^2vcancel(-cosucosvsinv)#
#cos(u-v)sinvlarrcolor(red)"second term"#
#=(cosucosv+sinusinv)sinv#
#=cancel(cosucosvsinv)+sinusin^2v#
#"adding the 2 expansions gives"#
#sinucos^2v+sinusin^2v#
#=sinu(cos^2v+sin^2v)=sinu#