How do you simplify #sqrt(-6)+ sqrt(-8)#?

1 Answer
Jan 26, 2017

#sqrt(-6)+sqrt(-8)=i(sqrt6+2sqrt2)#

Explanation:

We should remember square root of negative numbers means, we are dealing with complex numbers. Important thing to note here is that #sqrt(-1)=i# or #i^2=-1#.

Hence, #sqrt(-6)+sqrt(-8)#

= #sqrt(-1xx6)+sqrt(-1xx8)#

= #sqrt(-1)xxsqrt6+sqrt(-1)xxsqrt(2xx2xx2)#

= #isqrt6+2isqrt2#

= #i(sqrt6+2sqrt2)#