How do you simplify #sqrt(x^14 y^21) / z^-35#?
1 Answer
Explanation:
According to the exponent rule,
#sqrt(x^14y^21)/z^-35#
#=sqrt(x^14y^21)/(1/z^35)#
Divide the numerator by the denominator.
#=sqrt(x^14y^21)-:1/z^35#
Simplify.
#=sqrt(x^14y^21)*z^35/1#
#=sqrt(x^14y^21)z^35#
As a shortcut, since you know that
#sqrt(x^14y^21)/z^-35rArrsqrt(x^14y^21)z^35#
Going on, recall that
#=sqrt(x^14y^21)z^35#
#=sqrt(x^14)sqrt(y^21)z^35#
#=x^(14*color(red)(1/2))y^(21*color(red)(1/2))z^35#
Simplify.
#=x^7y^(21/2)z^35#