How do you simplify #sqrt10*sqrt12#?

2 Answers
Mar 19, 2018

Answer:

#2sqrt30#

Explanation:

We can rewrite #sqrt10*sqrt12# as #sqrt(10*12)=sqrt120#. Now we can factor a perfect square out of #sqrt120#. We get:

#sqrt120=sqrt4*sqrt30#

#=>2sqrt30#

There are no perfect squares in #30#, so we are done!

Mar 19, 2018

Answer:

#sqrt(10*12)#

#=sqrt(120)#

#=sqrt(3*4*10)#

#=sqrt(4)*sqrt(30)#

#=2sqrt(30)#

Explanation:

sqrt(a) * sqrt(b) = sqrt(a*b)