How do you simplify #sqrt18+sqrt2#?

2 Answers
Jul 1, 2015

Answer:

#sqrt(18)+sqrt(2) = 4sqrt(2)#

Explanation:

If #a >= 0# then #sqrt(a^2) = a#

If #a, b >= 0# then #sqrt(ab) = sqrt(a)sqrt(b)#

#sqrt(18)+sqrt(2)#

#=sqrt(3^2*2) + sqrt(2)#

#=sqrt(3^2)*sqrt(2) + sqrt(2)#

#=3sqrt(2)+sqrt(2)#

#=(3+1)sqrt(2)#

#=4sqrt(2)#

Jul 1, 2015

Answer:

I found: #4sqrt(2)#

Explanation:

Você pode escrever a primeira raiz como #sqrt(9*2)# e tirar fora da raiz #9# que vira #3#:
Assim:
#sqrt(18)+sqrt(2)=sqrt(9*2)+sqrt(2)=#
#=3sqrt(2)+sqrt(2)=# agora pode somar os termos parecidos e ter:
#=4sqrt(2)#