How do you simplify the expression #(9a^5)/(3a)#?

1 Answer
Apr 4, 2018

The simplified expression is #3a^4#.

Explanation:

Use this exponent rule:

#x^color(red)m/x^color(blue)n=x^(color(red)m-color(blue)n)#

First, split up the fraction into the number and letter parts, and compute each part separately:

#color(white)=(9a^5)/(3a)#

#=(9*a^5)/(3*a)#

#=9/3*a^5/a#

#=3*a^5/a#

#=3*a^color(red)5/a^color(blue)1#

#=3*a^(color(red)5-color(blue)1)#

#=3*a^color(purple)4#

#=3a^color(purple)4#

That's simplified all the way. Hope this helped!