How do you simplify #(x^2-16)/x^3+(x^3+1)/x^4#?

1 Answer
Aug 19, 2017

See a solution process below:

Explanation:

To add fractions they must be over a common denominator. We can multiply the fraction on the left by the appropriate form of #1# to give it a common denominator with the fraction on the right:

#(x/x xx (x^2 - 16)/x^3) + (x^3 + 1)/x^4 =>#

#(x(x^2 - 16))/(x xx x^3) + (x^3 + 1)/x^4 =>#

#((x xx x^2) - (x xx 16))/x^4 + (x^3 + 1)/x^4 =>#

#(x^3 - 16x)/x^4 + (x^3 + 1)/x^4#

We can now add the numerators of the two fractions over the common denominator:

#(x^3 - 16x + x^3 + 1)/x^4 =>#

#(x^3 + x^3 - 16x + 1)/x^4 =>#

#(1x^3 + 1x^3 - 16x + 1)/x^4 =>#

#((1 + 1)x^3 - 16x + 1)/x^4 =>#

#(2x^3 - 16x + 1)/x^4#