How do you simplify #(x^2+21x+90)/(x^2+17x+66) + (2x^2+17x+21)/(2x^2+25x+33)#?

1 Answer
Oct 20, 2015

#(x^2+21x+90)/(x^2+17x+66)+(2x^2+17x+21)/(2x^2+25x+33)=2#

Explanation:

First, factor all quadratic expressions.

#[1]color(white)(XX)(x^2+21x+90)/(x^2+17x+66)+(2x^2+17x+21)/(2x^2+25x+33)#

#[2]color(white)(XX)=[(x+6)(x+15)]/[(x+6)(x+11)]+[(2x+3)(x+7)]/[(2x+3)(x+11)]#

Cancel any common factors.

#[3]color(white)(XX)=[cancel((x+6))(x+15)]/[cancel((x+6))(x+11)]+[cancel((2x+3))(x+7)]/[cancel((2x+3))(x+11)]#

#[4]color(white)(XX)=(x+15)/(x+11)+(x+7)/(x+11)#

Add the two together.

#[5]color(white)(XX)=[(x+15)+(x+7)]/(x+11)#

#[6]color(white)(XX)=(2x+22)/(x+11)#

Factor out 2 from #2x+22#.

#[7]color(white)(XX)=(2(x+11))/(x+11)#

Cancel out the common factor.

#[8]color(white)(XX)=(2cancel((x+11)))/cancel((x+11))#

#[8]color(white)(XX)=color(red)(2)#