How do you simplify  (x-2)(3x-4) ?

Mar 19, 2018

Multiply across the parenthesis and combine like terms

Explanation:

$\left(x - 2\right) \times \left(3 x - 4\right) = x \times \left(3 x - 4\right) - 2 \left(3 x - 4\right)$

$x \times \left(3 x - 4\right) - 2 \left(3 x - 4\right) = 3 {x}^{2} - 4 x - 6 x + 8$

$3 {x}^{2} - 4 x - 6 x + 8 = 3 {x}^{2} - 10 x + 8$

Mar 19, 2018

See a solution process below:

Explanation:

To multiply these two terms you multiply each individual term in the left parenthesis by each individual term in the right parenthesis.

$\left(\textcolor{red}{x} - \textcolor{red}{2}\right) \left(\textcolor{b l u e}{3 x} - \textcolor{b l u e}{4}\right)$ becomes:

$\left(\textcolor{red}{x} \times \textcolor{b l u e}{3 x}\right) - \left(\textcolor{red}{x} \times \textcolor{b l u e}{4}\right) - \left(\textcolor{red}{2} \times \textcolor{b l u e}{3 x}\right) + \left(\textcolor{red}{2} \times \textcolor{b l u e}{4}\right)$

$3 {x}^{2} - 4 x - 6 x + 8$

We can now combine like terms:

$3 {x}^{2} + \left(- 4 - 6\right) x + 8$

$3 {x}^{2} + \left(- 10\right) x + 8$

$3 {x}^{2} - 10 x + 8$

Mar 19, 2018

$3 {x}^{2} - 10 x + 8$
$x \left(3 x - 4\right) - 2 \left(3 x - 4\right)$
$3 {x}^{2} - 4 x - 6 x + 8$
$3 {x}^{2} - 10 x + 8$