How do you simplify # (x-2)(3x-4) #?

3 Answers
Mar 19, 2018

Answer:

Multiply across the parenthesis and combine like terms

Explanation:

#( x -2)xx (3x -4) = x xx( 3x-4) -2 ( 3x-4)#

# x xx( 3x-4) - 2(3x-4) = 3x^2 -4x - 6x + 8#

# 3x^2 -4x -6x +8 = 3x^2 -10x +8#

Mar 19, 2018

Answer:

See a solution process below:

Explanation:

To multiply these two terms you multiply each individual term in the left parenthesis by each individual term in the right parenthesis.

#(color(red)(x) - color(red)(2))(color(blue)(3x) - color(blue)(4))# becomes:

#(color(red)(x) xx color(blue)(3x)) - (color(red)(x) xx color(blue)(4)) - (color(red)(2) xx color(blue)(3x)) + (color(red)(2) xx color(blue)(4))#

#3x^2 - 4x - 6x + 8#

We can now combine like terms:

#3x^2 + (-4 - 6)x + 8#

#3x^2 + (-10)x + 8#

#3x^2 - 10x + 8#

Mar 19, 2018

Answer:

#3x^2- 10x+8 #

Explanation:

#x ( 3x - 4) -2( 3x - 4)#

#3x^2- 4x - 6x+8#

#3x^2- 10x+8 #