How do you simplify (x^-3)^-3x^3(x3)3x3 and write it using only positive exponents?

1 Answer
Jul 19, 2017

See a solution process below:

Explanation:

First, use this rule of exponents to simplify the expression on the left:

(x^color(red)(a))^color(blue)(b) = x^(color(red)(a) xx color(blue)(b))(xa)b=xa×b

(x^color(red)(-3))^color(blue)(-3)x^3 => x^(color(red)(-3) xx color(blue)(-3))x^3 =x^9x^3(x3)3x3x3×3x3=x9x3

Now, use this rule of exponents to complete the simplification:

x^color(red)(a) xx x^color(blue)(b) = x^(color(red)(a) + color(blue)(b))xa×xb=xa+b

x^color(red)(9)x^color(blue)(3) => x^(color(red)(9) + color(blue)(3)) = x^12x9x3x9+3=x12