How do you simplify # (x^3)^5#?

2 Answers
Aug 2, 2018

Answer:

#" "#
#color(red)( (x^3)^5=x^15#

Explanation:

#" "#
Using the exponent formula: #color(blue)((x^m)^n=x^(mn)#,

we can simplify

#color(green)( (x^3)^5# as

#rArr x^[(3)(5)]#

#rArr x^15#

Hence,

#color(red)( (x^3)^5=x^15#

Hope it helps.

Aug 2, 2018

Answer:

#x^(15)#

Explanation:

#"using the "color(blue)"law of exponents"#

#•color(white)(x)(a^m)^n=a^((mxxn))#

#(x^3)^5=x^((3xx5))=x^(15)#