How do you simplify #(x^3 - 9x) / (x^2 - 7x + 12)#?
2 Answers
Explanation:
#"factorise numerator and denominator"#
#color(magenta)"factor numerator"#
#"take out a "color(blue)"common factor "x#
#=x(x^2-9)#
#x^2-9" is a "color(blue)"difference of squares"#
#"which factors in general as"#
#•color(white)(x)a^2-b^2=(a-b)(a+b)#
#"here "a=x" and "b=3#
#rArrx^2-9=(x-3)(x+3)#
#rArrx^3-9x=x(x-3)(x+3)larrcolor(red)"factorised form"#
#color(magenta)"factor denominator"#
#"the factors of + 12 which sum to - 7 are - 3 and - 4"#
#rArrx^2-7x+12=(x-3)(x-4)larrcolor(red)"factored form"#
#rArr(x^3-9x)/(x^2-7x+12)#
#=(x(x-3)(x+3))/((x-3)(x-4))#
#"cancel the "color(blue)"common factor "(x-3)#
#=(xcancel((x-3))(x+3))/(cancel((x-3))(x-4))=(x(x+3))/(x-4)#
#"with restriction "x!=4#
Explanation:
Ans that's your answer.
P.S.: Isn't the solution