How do you simplify #( x^-3 y^ -5 )/z^-2#? Algebra Exponents and Exponential Functions Exponential Properties Involving Quotients 1 Answer Tazwar Sikder Sep 5, 2016 #(z^(2)) / (x^(3) y^(5))# Explanation: We have: #(x^(- 3) y^(- 5)) / (z^(- 2))# Let's express the variables as fractions: #= ((1) / (x^(3)) cdot (1) / (y^(5))) / ((1) / (z^(2)))# #= ((1) / (x^(3) y^(5))) / ((1) / (z^(2)))# #= ((1) / (x^(3) y^(5))) / ((1) / (z^(2))) cdot (z^(2)) / (z^(2))# #= ((z^(2)) / (x^(3) y^(5))) / (1)# #= (z^(2)) / (x^(3) y^(5))# Answer link Related questions What is the quotient of powers property? How do you simplify expressions using the quotient rule? What is the power of a quotient property? How do you evaluate the expression #(2^2/3^3)^3#? How do you simplify the expression #\frac{a^5b^4}{a^3b^2}#? How do you simplify #((a^3b^4)/(a^2b))^3# using the exponential properties? How do you simplify #\frac{(3ab)^2(4a^3b^4)^3}{(6a^2b)^4}#? Which exponential property do you use first to simplify #\frac{(2a^2bc^2)(6abc^3)}{4ab^2c}#? How do you simplify #(x^5y^8)/(x^4y^2)#? How do you simplify #[(2^3 *-3^2) / (2^4 * 3^-2)]^2#? See all questions in Exponential Properties Involving Quotients Impact of this question 1584 views around the world You can reuse this answer Creative Commons License