How do you simplify #(x^-4 x^3)/(x^-2 x^4)#?

1 Answer
Mar 11, 2016

#=x^-3# or #1/x^3#

Explanation:

#(x^-4 x^3)/ (x^-2 x^4)#

  • As per property:
    #color(blue)(a^m * a^n =a^ (m+n)#

#(x^-4 x^3)/ (x^-2 x^4) = color(blue)(x^ (-4 +3) / x^(-2+4)#

# = x^-1/ x^2#

  • As per property :
    #color(blue)(a^m/a^n = a^(m-n)#

So, # x^-1/ x^2 = color(blue)( x^ (-1-2)#

#=x^-3# or #1/x^3#