How do you simplify #(x + 5)^2#?

1 Answer
Aug 28, 2016

#(x+5)=color(blue)(x^2+10x+25)#

Explanation:

#(x+5)^2# is a sum of squares, #(a+b)^2=a^2+2ab+b^2#, where #a=x#, and #b=5#.

Expand.

#(x+5)^2=x^2+2(x)(5)+5^2#

Simplify.

#(x+5)=x^2+10x+25#

You can also use the FOIL method to multiply two binomials.

http://www.mesacc.edu/~scotz47781/mat120/notes/polynomials/foil_method/foil_method.html

#(x+5)^2=(x+5)(x+5)#

#(x+5)(x+5)=x*x+x*5+5*x+5*5#

Simplify.

#(x+5)(x+5)=x^2+5x+5x+25#

Simplify.

#(x+5)(x+5)=x^2+10x+25#